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ABSTRACT
Human perception of music and image are highly correlat-
ed. Both of them can inspire human sensation like emotion
and power. This paper investigates how to model the rela-
tionship between music and image using 47,888 music-image
pairs extracted from music videos. We have two basic obser-
vations for this relationship: 1) music space exhibits simpler
cluster structure than image space, and 2) the relationship
between the two spaces is complex and nonlinear. Based on
these observations, we develop Multiple Ranking Canonical
Correlation Analysis (MR-CCA) to learn such relationship.
MR-CCA clusters the music-image pairs according to their
music parts, and then conducts Ranking CCA (R-CCA) for
each cluster. Compared with classical CCA, R-CCA takes
account of the pairwise ranking information available in our
dataset. MR-CCA improves performance and significantly
reduce computational cost. Experiment results show that
R-CCA outperforms CCA, and MR-CCA has the best per-
formance with a consistency score of 84.52% with human
labeling. The proposed method can be generalized to model
cross media relationship and has potential applications in
video generation, background music recommendation, and
joint retrieval of music and image.
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1. INTRODUCTION
Music and image are two popular forms of media, one in

audio and the other in vision. It is well known that human
perceptions of music and image show strong correlations
with each other. Both of them can inspire similar human
sensation like emotion, power, and weight. Psychology and
cognition studies indicate that brain information processing
of visual and audio are related[7]. Osborne [8] proposes that
music can stimulate visual imagery. Juslin et al.[5] argue
that visual imagery is an important mechanism by which
music brings emotion. For example, people may react with
both positive emotions when listening to melodic movemen-
t as ‘upward’ or facing a beautiful nature scene. In movie
and TV program, music and image (video) often appear in
parallel as complement to each other to enhance emotion
resonance. Meyer [6] discusses that “it seems probable that
... image processes play a role of great importance in the
musical affective experiences of many listeners”.

There exist works to model the relationship between text
and image [9] or text and music [12]. But few works di-
rectly analyze the semantic relationship between image and
music. To our best knowledge, our work is the first one to
investigate the matching degree between image and music.

The objective of this paper is to preliminarily study this
challenging problem. To bridge music and image is hard.
Firstly, image and music have different feature representa-
tions. Secondly, both image space and music space exhib-
it complex structure, and the relationship between them is
nonlinear. This paper develops Multiple Ranking Canoni-
cal Correlation Analysis (MR-CCA) to deal with this prob-
lem. MR-CCA clusters music-image pairs according to their
music sides, and utilizes Ranking CCA to model the local
relationship for each cluster. It is noted that the proposed
method is general and can be applied to other problems.

To examine the effectiveness of the proposed method, we
collected a set of 47,888 music-image pairs from more than
1,500 music videos. We chose half of these pairs and asked
labelers to compare their matching degree. The labelers
largely agree with each other on the annotation, which in-
dicates that human have consensus on this problem. The
experimental results of our method show that MR-CCA has
the best performance and achieves a consistency score of
84.52% with human annotation.



2. PREPARATIONS
This section describes how to construct and annotate the

dataset used in this paper, and then discuss how to calculate
feature representation for music and image.

2.1 Data and annotation
We collected a set of 47,888 music-image pairs from more

than 1,500 music videos (MVs), which cover music with vari-
ous styles and genres, and are from about 500 singers. Since
a MV contains audio signal with large variation, different
audio segments can correspond to different images. So we
segment the music with dynamic texture model [1], and each
music-image pair is composed of a key frame from the video
part and its associated music segment. Since most music
videos are created by experts with deliberate consideration,
most pairs obtained in this way should be well matched. To
further validate the dataset, we ask human labelers to com-
pare the matching degree of a pair from MV and a random
pair (music is the same but image is selected randomly). Al-
l labelers prefer music-image pair from MV with a rate of
89.2%.

2.2 Representation of music and image
Two categories of features are considered for music rep-

resentations. The first is the Echo Nest Song(ENS) feature
vector, each dimension of which corresponds to a mid-level
acoustic characteristic [11] such as tempo, mode, and mean
section length. There exists open API to calculate ENS fea-
tures1. The second category consists of a set of semantic
features, each of which corresponds to a semantic word de-
scription of a song, like happy or relax. The semantic words
are obtained from famous music sites, such as Google mu-
sic. A music segment is represented as a vector of posterior
probabilities with respect to the pre-defined semantic words,
computed with mix hierarchical learning [12]. Mainly follow-
ing [10], image is represented by three types of features, 1)
color features: hue and RGB histogram, color SIFT, col-
or spatialet etc; 2) shape features: Histogram of Gradient,
edge orientation histogram etc; 3)texture and appearance
features: wavelet, GIST etc. The music and image feature
vector has a total dimension of 133 and 2,596, respective-
ly. For each type of music and image feature, we define a
distance function for it.

3. MULTIPLE RANKING CANONICAL COR-
RELATION ANALYSIS

In this section, we introduce Multiple Ranking Canoni-
cal Correlation Analysis (MR-CCA). MR-CCA is a learning
based approach and its diagram is shown in Fig. 1. Let
Vi = {Ii,Mi} denote a set of music-image pairs for train-
ing. The objective of MR-CCA is to estimate a similarity
function S(I,M) between image I and music M .

3.1 Cluster and Distance to Reference Trans-
formation

Both music and image space have high dimension and
complex structures. To simplify the problem, we cluster
music-image pairs first. It is believed that the music-image
relationship in each cluster should be simpler and more eas-
ily to be modeled. One problem is that the relationship

1http://developer.echonest.com

between music and image is many-to-many not one-to-one.
So it is not a good idea to cluster pairs with both music and
image features. Compared with image space, music space in-
cludes less diversity and exhibits simpler cluster structure.
Thus, we use normalized cut to cluster the music parts, and
the images are divided according to the cluster information
of their music parts. Let {V1, V2, ..., VC} denote the clusters.

Inspired by the success of similarity based representation
in [2, 13], we use a Distance to Reference Transformation
(DtRT) which converts original feature into a new DtRT
representation. For each cluster Vc, we select a set of ref-
erence samples {Irc ,Mr

c }Rr=1 where R is the size of refer-
ence set. For another music I in Vc, we calculate distance
dI(I, I

r
c ), then convert the distance to similarity by src(I) =

exp
{
− dI (I,I

r
c )2

σI
2

}
, where σI is a normalization parameter.

The new representation for image I is defined as a vec-
tor composed by the similarities xc(I) = [s1c(I), ..., s

R
c (I)].

In the same way, we can get yc(M) = [s1c(M), ..., sRc (M)]
for music M . In the next, we use DtRT representation
xc(I), yc(M) (or x, y for simplicity) instead of I,M , and
set similarity function S(x, y) = S(I,M). One advantage of
using x and y is that both of them have the same dimension,
and their components are aligned correspondingly.

3.2 Ranking Canonical Correlation Analysis
This section proposes Ranking CCA (R-CCA) to esti-

mate a similarity function Sc(x, y) for each cluster c. Let
Vc = {xi, yi} denote the set of training pairs in cluster c.
Canonical correlation analysis (CCA) [4] aims to find da-
ta projections with the largest correlation across two (or
more) spaces , which has been successfully used for cross-
modal multimedia retrieval [9]. Introduce the project matri-
ces A = [a1; a2; ...; aJ ], B = [b1; b2; ...; bJ ]. The objective of

CCA is maxA,B

∑J
j=1

∑N
i=1 ajxibjyi. It can be shown that

optimal A are composed by the eigenvectors of Σ−1
XXΣXY

Σ−1
Y Y ΣY X associated with the J largest eigenvalues, while B

are composed by the eigenvectors of Σ−1
Y Y ΣY XΣ−1

XXΣXY as-
sociated with the J largest eigenvalues, where ΣXX ,ΣY Y are
covariance matrices for xi, yi respectively, and ΣXY ,ΣY X

are covariance matrices between xi and yi. With A,B, the
similarity function of CCA is defined by,

SCCA
c (x, y) = ⟨Ax,By⟩. (1)

Human annotation described in Section 2.1 yields pair-
wise ranking information, which means one pair should have
higher similarity score than another, i.e., S(xi, yi) > S(x′

i, y
′
i).

Classical CCA cannot handle such kind of pairwise ranking
information. Here we develop Ranking Canonical Correla-
tion Analysis (R-CCA) to take account of these information.
Mathematically, the objective of R-CCA learning is,

min
A,B

∑
i

f(Sc(xi, yi)− Sc(x
′
i, y

′
i)), (2)

where similarity function Sc(xi, yi), has the same form as
Eq. 1, and f is a hinge penalty function. If t ≤ 0, f(t) = −t;
otherwise f(t) = 0. The constraints are ∥aiX∥ = ∥biY ∥ = 1,
aT
i X

TXaj = 0, and bTi Y
TY bj = 0.

To directly optimize Eq. 2 is difficult. This is because S
has a quadratic form of A and B, and both A and B contain
a large number of variables. To simplify the problem, we
apply classical CCA on matched pairs {(xi, yi)} to obtain
projection matrices A and B to reduce the dimensionality,



Figure 1: Framework of Multiple Ranking Canonical Correlation Analysis: (a). Cluster in music space;
(b). DtRT representation for music and image; (c). Ranking canonical correlation analysis in cluster; (d).
Combination of estimation score of clusters.

and introduce the following similarity function for R-CCA,

SR-CCA
c (xi, yi) = x⊤

i A
⊤ΣByi, (3)

where Σ is a matrix with size J × J . Since A and B are
known, we only need to optimize Σ which minimizes Eq. 2.
Σ contains much less variables than A,B. Moreover, Eq.

3 has a linear form of Σ which makes optimization easier.
We can further assume Σ is a diagonal matrix, since the
projections obtained by CCA are uncorrelated. Let W =
[w1, w2, ..., wJ ] denote the diagonal of Σ. Introduce vari-

ables, zji = ajxibjyi, zi = [z1i , z
2
i , ..., z

J
i ], z

j
i

′
= ajxi

′bjyi
′,

and z′i = [z1i
′
, z2i

′
, ..., zJi

′
]. Then Eq. 3 can be written into,

SR-CCA
c (xi, yi) =

∑
j

wjajxibjyi = W⊤zi. (4)

Then our objective reduces to optimize W with

min
W

∑
i

f(W⊤zi −W⊤z′i). (5)

This is in spirit the same as the optimization for ordinal
SVM [3], whose due problem is defined as

min
W

∥W∥2 +
∑

ξi, (6)

subject to,

ξi ≥ 0, (7)

WT zi −WT z′i ≥ 1− ξi. (8)

The above problem is a quadratic programming which can
be solved by Lagrangian multipliers.

3.3 Similarity score ensemble
In previous subsection, we have estimated a similarity

function for each cluster by CCA (Eq. 1) or R-CCA (E-
q. 3). For a testing pair (x, y), we need to combine these
similarity functions to obtain a final similarity score. The

simple idea is to determine which cluster (x, y) belongs to.
Let c∗ denote the index of the nearest cluster. Then

S(x, y) = Sc∗(x, y). (9)

Eq. 9 is simple. But it cannot deal well with the samples
near cluster boundary. To overcome this problem, we intro-
duce a ‘soft’ similarity function by using softmax function as
weights. Let dc denote the distance between pair (x, y) and
the center of c-th cluster. The weighted similarity function
is,

S(x, y) =
C∑

c=1

exp(−dc/σ
2)∑C

j=1 exp(−dj/σ2)
Sc(x, y), (10)

where C is the number of cluster, and σ is a normalization
parameter. Eq. 10 can model the nonlinear relation between
x and y, since weights depend on input pair (x, y).

4. EXPERIMENT
This section presents our experimental evaluation. We

randomly select 20,000 of all 22,632 music segments for clus-
tering and training, and use the rest for testing. We random-
ly select a set of samples from each cluster as its reference
set. We explore the effect of two parameters, the number of
cluster K and the proportion of reference set size to cluster
size 1/d. K is changed from 3 to 20. d is changed from 2 to
20, which means 1/d-th samples in each cluster are used as
the corresponding reference set. The labelers’ preference are
set as ground truth. The consistency rates (precision) with
human labeling are used as evaluation criterion. We repeat
each experiment 10 times.

Comparison of Methods. We compared three similar-
ity estimation methods, closest CCA (C-CCA, Eq. 1+Eq.
9), closest Ranking CCA (CR-CCA, Eq. 4+Eq. 9), and
Multiple Ranking CCA (MR-CCA, Eq. 4+Eq. 10). Since
there is no previous study on this problem, closest CCA can
be seen as a baseline method. Firstly, we fix the propor-
tion of reference set 1/d as 1/6 and, change the number of



Figure 2: A) Precisions using C-CCA, CR-CCA,
MR-CCA and MR-CCA with human-labeled pairs
when changing the number of cluster; B) Precision-
s using C-CCA, CR-CCA, MR-CCA and MR-CCA
with human-labeled pairs when changing the pro-
portion of reference set to training set, x axis is the
inverse of the proportion.

Table 1: Local reference Vs Global reference
Reference Type Consistency Rate Training Time Cost
Local reference 80.35% 46.3999s
Global reference 79.24% 869.2618s

cluster K. Experimental results are shown in Fig. 2A. The
precisions of all three methods generally increase with the
number of cluster when K ≤ 10. This is partly because too
few clusters cannot model the whole space precisely. When
K > 10, the precisions increase little. The highest precision
we obtained is 81.23%, when the number of cluster is 13 and
MR-CCA is used. We also conduct an experiment that only
uses some human-labeled pairs to test. It shows that our
methods perform better on average. The highest precision
is 84.52% with MR-CCA when K = 5 and d = 5. This
means our methods are comparable with human annotation
performance on this task.
Secondly, we fix the number of cluster K as 10 and change

the proportion of reference set 1/d. The results are depicted
in Fig. 2B. The best 1/d is around 1/6 ∼ 1/8. This is
because DtRT features cannot convey enough information
when too few references are used, while too many reference
can lead to redundant and noisy representations.
In all our experiments, we find MR-CCA archives the best

performance among the three methods, and CR-CCA always
outperforms C-CCA. This indicates that 1)Ranking CCA
is more effective than classical CCA due to the fact that
it can use pairwise ranking information in training, and 2)
the weighted summation of similarity functions (Eq. 10) is
better than the single closest similarity function (Eq. 9).
Comparison of Time Efficiency. Another issue is how

to select reference samples. In spite of selecting local refer-
ences for each cluster, one may suggest to use global refer-
ence set which is randomly chosen from the whole training
set. In the next, we make comparison between local ref-
erence and global reference. To be fair for both kinds of
reference, we fixe the proportion of reference set as 1/10.
Cluster number K is chosen as 10. We also conduct experi-
ments with other d and K. The tendency is similar, thus we
omit these results due to space limitation. The precisions
and training time cost are shown in Table 1. All the exper-
iments are run on a machine with 2.80GHz CPU and 16GB
of RAM. It can be seen that local reference has slightly bet-
ter performance and is much faster, which is more scalable
for larger or distributed database. That’s because the DtRT

feature representations x, y has lower dimension with local
reference than with global reference for the same d.

5. CONCLUSIONS
This paper develops multiple ranking CCA which consid-

ers both cluster structure and pairwise ranking information
to learn similarity between music and image. Our exper-
iments on 47,888 pairs show the effectiveness of the pro-
posed methods, and MR-CCA achieves a consistency score
of 84.52% with human labelers on comparing music-image
pairs. It is noted that to model the relationship between mu-
sic and image is a challenging and general problem. This pa-
per is more of an attempt to introduce the topic and present
methods with inspiring results on data from music video.
Although the discussions are limited to music-image pairs,
our analysis and methods can be generalized to other type-
s of multimodal relationship. The proposed methods have
been successfully applied to automatic music video genera-
tion [14].
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